Emmy Noether – Mathematician Extraordinaire

Author: David E. Rowe

Publisher: Springer Nature

ISBN: 9783030638108

Category: Mathematics

Page: 339

View: 391

Although she was famous as the "mother of modern algebra," Emmy Noether’s life and work have never been the subject of an authoritative scientific biography. Emmy Noether – Mathematician Extraordinaire represents the most comprehensive study of this singularly important mathematician to date. Focusing on key turning points, it aims to provide an overall interpretation of Noether’s intellectual development while offering a new assessment of her role in transforming the mathematics of the twentieth century. Hermann Weyl, her colleague before both fled to the United States in 1933, fully recognized that Noether’s dynamic school was the very heart and soul of the famous Göttingen community. Beyond her immediate circle of students, Emmy Noether’s lectures and seminars drew talented mathematicians from all over the world. Four of the most important were B.L. van der Waerden, Pavel Alexandrov, Helmut Hasse, and Olga Taussky. Noether’s classic papers on ideal theory inspired van der Waerden to recast his research in algebraic geometry. Her lectures on group theory motivated Alexandrov to develop links between point set topology and combinatorial methods. Noether’s vision for a new approach to algebraic number theory gave Hasse the impetus to pursue a line of research that led to the Brauer–Hasse–Noether Theorem, whereas her abstract style clashed with Taussky’s approach to classical class field theory during a difficult time when both were trying to find their footing in a foreign country. Although similar to Proving It Her Way: Emmy Noether, a Life in Mathematics, this lengthier study addresses mathematically minded readers. Thus, it presents a detailed analysis of Emmy Noether’s work with Hilbert and Klein on mathematical problems connected with Einstein’s theory of relativity. These efforts culminated with her famous paper "Invariant Variational Problems," published one year before she joined the Göttingen faculty in 1919.
Emmy Noether -- Mathematician Extraordinaire

Author: David E. Rowe

Publisher:

ISBN: 3030638111

Category: History

Page: 357

View: 365

Although she was famous as the "mother of modern algebra," Emmy Noether's life and work have never been the subject of an authoritative scientific biography. Emmy Noether - Mathematician Extraordinaire represents the most comprehensive study of this singularly important mathematician to date. Focusing on key turning points, it aims to provide an overall interpretation of Noether's intellectual development while offering a new assessment of her role in transforming the mathematics of the twentieth century. Hermann Weyl, her colleague before both fled to the United States in 1933, fully recognized that Noether's dynamic school was the very heart and soul of the famous Göttingen community. Beyond her immediate circle of students, Emmy Noether's lectures and seminars drew talented mathematicians from all over the world. Four of the most important were B.L. van der Waerden, Pavel Alexandrov, Helmut Hasse, and Olga Taussky. Noether's classic papers on ideal theory inspired van der Waerden to recast his research in algebraic geometry. Her lectures on group theory motivated Alexandrov to develop links between point set topology and combinatorial methods. Noether's vision for a new approach to algebraic number theory gave Hasse the impetus to pursue a line of research that led to the Brauer-Hasse-Noether Theorem, whereas her abstract style clashed with Taussky's approach to classical class field theory during a difficult time when both were trying to find their footing in a foreign country. Although similar to Proving It Her Way: Emmy Noether, a Life in Mathematics, this lengthier study addresses mathematically minded readers. Thus, it presents a detailed analysis of Emmy Noether's work with Hilbert and Klein on mathematical problems connected with Einstein's theory of relativity. These efforts culminated with her famous paper "Invariant Variational Problems," published one year before she joined the Göttingen faculty in 1919.
Proving It Her Way

Author: David E. Rowe

Publisher:

ISBN: 9783030628116

Category: Algebra

Page: 259

View: 144

The name Emmy Noether is one of the most celebrated in the history of mathematics. A brilliant algebraist and iconic figure for women in modern science, Noether exerted a strong influence on the younger mathematicians of her time and long thereafter; today, she is known worldwide as the "mother of modern algebra." Drawing on original archival material and recent research, this book follows Emmy Noethers career from her early years in Erlangen up until her tragic death in the United States. After solving a major outstanding problem in Einsteins theory of relativity, she was finally able to join the Göttingen faculty in 1919. Proving It Her Way offers a new perspective on an extraordinary career, first, by focusing on important figures in Noethers life and, second, by showing how she selflessly promoted the careers of several other talented individuals. By exploring her mathematical world, it aims to convey the personality and impact of a remarkable mathematician who literally changed the face of modern mathematics, despite the fact that, as a woman, she never held a regular professorship. Written for a general audience, this study uncovers the human dimensions of Noethers key relationships with a younger generation of mathematicians. Thematically, the authors took inspiration from their cooperation with the ensemble portraittheater Vienna in producing the play "Diving into Math with Emmy Noether." Four of the young mathematicians portrayed in Proving It Her Way - B.L. van der Waerden, Pavel Alexandrov, Helmut Hasse, and Olga Taussky - also appear in "Diving into Math.".
The Philosophy and Physics of Noether's Theorems

Author: James Read

Publisher: Cambridge University Press

ISBN: 9781108786812

Category: Science

Page: 388

View: 557

In 1918, Emmy Noether, in her paper Invariante Variationsprobleme, proved two theorems (and their converses) on variational problems that went on to revolutionise theoretical physics. 100 years later, the mathematics of Noether's theorems continues to be generalised, and the physical applications of her results continue to diversify. This centenary volume brings together world-leading historians, philosophers, physicists, and mathematicians in order to clarify the historical context of this work, its foundational and philosophical consequences, and its myriad physical applications. Suitable for advanced undergraduate and graduate students and professional researchers, this is a go-to resource for those wishing to understand Noether's work on variational problems and the profound applications which it finds in contemporary physics.
Framing Global Mathematics

Author: Norbert Schappacher

Publisher: Springer Nature

ISBN: 9783030956837

Category: Mathematics

Page: 20

View: 146

This open access book is about the shaping of international relations in mathematics over the last two hundred years. It focusses on institutions and organizations that were created to frame the international dimension of mathematical research. Today, striking evidence of globalized mathematics is provided by countless international meetings and the worldwide repository ArXiv. The text follows the sinuous path that was taken to reach this state, from the long nineteenth century, through the two wars, to the present day. International cooperation in mathematics was well established by 1900, centered in Europe. The first International Mathematical Union, IMU, founded in 1920 and disbanded in 1932, reflected above all the trauma of WW I. Since 1950 the current IMU has played an increasing role in defining mathematical excellence, as is shown both in the historical narrative and by analyzing data about the International Congresses of Mathematicians. For each of the three periods discussed, interactions are explored between world politics, the advancement of scientific infrastructures, and the inner evolution of mathematics. Readers will thus take a new look at the place of mathematics in world culture, and how international organizations can make a difference. Aimed at mathematicians, historians of science, scientists, and the scientifically inclined general public, the book will be valuable to anyone interested in the history of science on an international level.
Felix Klein

Author: Renate Tobies

Publisher: Springer Nature

ISBN: 9783030757854

Category: Mathematics

Page: 677

View: 266

About Felix Klein, the famous Greek mathematician Constantin Carathéodory once said: “It is only by illuminating him from all angles that one can come to understand his significance.” The author of this biography has done just this. A detailed study of original sources has made it possible to uncover new connections; to create a more precise representation of this important mathematician, scientific organizer, and educational reformer; and to identify misconceptions. Because of his edition of Julius Plücker’s work on line geometry and due to his own contributions to non-Euclidean geometry, Klein was already well known abroad before he received his first full professorship at the age of 23. By exchanging ideas with his most important cooperation partner, the Norwegian Sophus Lie, Klein formulated his Erlangen Program. Various other visionary programs followed, in which Klein involved mathematicians from Germany and abroad. Klein was the most active promoter of Riemann’s geometric-physical approach to function theory, but he also integrated the analytical approaches of the Weierstrass school into his arsenal of methods. Klein was a citizen of the world who repeatedly travelled to France, Great Britain, Italy, the United States, and elsewhere. Despite what has often been claimed, it must be emphasized that Klein expressly opposed national chauvinism. He promoted mathematically gifted individuals regardless of their nationality, religion, or gender. Many of his works have been translated into English, French, Italian, Russian, and other languages; more than 300 supporters from around the world made it possible for his portrait to be painted by the prominent impressionist Max Liebermann. Inspired by international developments, Klein paved the way for women to work in the field of mathematics. He was instrumental in reforming mathematical education, and he endorsed an understanding of mathematics that affirmed its cultural importance as well as its fundamental significance to scientific and technological progress.
Foundations of General Relativity

Author: Klaas Landsman

Publisher: Radboud University Press

ISBN: 9789083178929

Category: Science

Page: 392

View: 905

This book, dedicated to Roger Penrose, is a second, mathematically oriented course in general relativity. It contains extensive references and occasional excursions in the history and philosophy of gravity, including a relatively lengthy historical introduction. The book is intended for all students of general relativity of any age and orientation who have a background including at least first courses in special and general relativity, differential geometry, and topology. The material is developed in such a way that through the last two chapters the reader may acquire a taste of the modern mathematical study of black holes initiated by Penrose, Hawking, and others, as further influenced by the initial-value or PDE approach to general relativity. Successful readers might be able to begin reading research papers on black holes, especially in mathematical physics and in the philosophy of physics. The chapters are: Historical introduction, General differential geometry, Metric differential geometry, Curvature, Geodesics and causal structure, The singularity theorems of Hawking and Penrose, The Einstein equations, The 3+1 split of space-time, Black holes I: Exact solutions, and Black holes II: General theory. These are followed by two appendices containing background on Lie groups, Lie algebras, & constant curvature, and on Formal PDE theory.
The Psychology of Mathematics

Author: Anderson Norton

Publisher: Routledge

ISBN: 9781000547016

Category: Education

Page: 238

View: 975

This book offers an innovative introduction to the psychological basis of mathematics and the nature of mathematical thinking and learning, using an approach that empowers students by fostering their own construction of mathematical structures. Through accessible and engaging writing, award-winning mathematician and educator Anderson Norton reframes mathematics as something that exists first in the minds of students, rather than something that exists first in a textbook. By exploring the psychological basis for mathematics at every level—including geometry, algebra, calculus, complex analysis, and more—Norton unlocks students’ personal power to construct mathematical objects based on their own mental activity and illustrates the power of mathematics in organizing the world as we know it. Including reflections and activities designed to inspire awareness of the mental actions and processes coordinated in practicing mathematics, the book is geared toward current and future secondary and elementary mathematics teachers who will empower the next generation of mathematicians and STEM majors. Those interested in the history and philosophy that underpins mathematics will also benefit from this book, as well as those informed and curious minds attentive to the human experience more generally.