Electronic Materials Handbook

Author:

Publisher: ASM International

ISBN: 0871702851

Category: Technology & Engineering

Page: 1234

View: 154

Volume 1: Packaging is an authoritative reference source of practical information for the design or process engineer who must make informed day-to-day decisions about the materials and processes of microelectronic packaging. Its 117 articles offer the collective knowledge, wisdom, and judgement of 407 microelectronics packaging experts-authors, co-authors, and reviewers-representing 192 companies, universities, laboratories, and other organizations. This is the inaugural volume of ASMAs all-new ElectronicMaterials Handbook series, designed to be the Metals Handbook of electronics technology. In over 65 years of publishing the Metals Handbook, ASM has developed a unique editorial method of compiling large technical reference books. ASMAs access to leading materials technology experts enables to organize these books on an industry consensus basis. Behind every article. Is an author who is a top expert in its specific subject area. This multi-author approach ensures the best, most timely information throughout. Individually selected panels of 5 and 6 peers review each article for technical accuracy, generic point of view, and completeness.Volumes in the Electronic Materials Handbook series are multidisciplinary, to reflect industry practice applied in integrating multiple technology disciplines necessary to any program in advanced electronics. Volume 1: Packaging focusing on the middle level of the electronics technology size spectrum, offers the greatest practical value to the largest and broadest group of users. Future volumes in the series will address topics on larger (integrated electronic assemblies) and smaller (semiconductor materials and devices) size levels.
Microelectronics Packaging Handbook

Author: Rao Tummala

Publisher: Springer Science & Business Media

ISBN: 0412084511

Category: Computers

Page: 662

View: 133

This thoroughly revised and updated three volume set continues to be the standard reference in the field, providing the latest in microelectronics design methods, modeling tools, simulation techniques, and manufacturing procedures. Unlike reference books that focus only on a few aspects of microelectronics packaging, these outstanding volumes discuss state-of-the-art packages that meet the power, cooling, protection, and interconnection requirements of increasingly dense and fast microcircuitry. Providing an excellent balance of theory and practical applications, this dynamic compilation features step-by-step examples and vital technical data, simplifying each phase of package design and production. In addition, the volumes contain over 2000 references, 900 figures, and 250 tables. Part I: Technology Drivers covers the driving force of microelectronics packaging - electrical, thermal, and reliability. It introduces the technology developer to aspects of manufacturing that must be considered during product development. Part II: Semiconductor Packaging discusses the interconnection of the IC chip to the first level of packaging and all first level packages. Electrical test, sealing, and encapsulation technologies are also covered in detail. Part III: Subsystem Packaging explores board level packaging as well as connectors, cables, and optical packaging.
Robust Electronic Design Reference Book: no special title

Author: John R. Barnes

Publisher: Springer Science & Business Media

ISBN: 1402077378

Category: Electronic apparatus and appliances

Page: 1356

View: 771

If you design electronics for a living, you need Robust Electronic Design Reference Book. Written by a working engineer, who has put over 115 electronic products into production at Sycor, IBM, and Lexmark, Robust Electronic Design Reference covers all the various aspects of designing and developing electronic devices and systems that: -Work. -Are safe and reliable. -Can be manufactured, tested, repaired, and serviced. -May be sold and used worldwide. -Can be adapted or enhanced to meet new and changing requirements.
Reliability in Scientific Research

Author: I. R. Walker

Publisher: Cambridge University Press

ISBN: 1139493353

Category: Science

Page:

View: 194

Covering many techniques widely used in research, this book will help researchers in the physical sciences and engineering solve troublesome - and potentially very time consuming - problems in their work. The book deals with technical difficulties that often arise unexpectedly during the use of various common experimental methods, as well as with human error. It provides preventive measures and solutions for such problems, thereby saving valuable time for researchers. Some of the topics covered are: sudden leaks in vacuum systems, electromagnetic interference in electronic instruments, vibrations in sensitive equipment, and bugs in computer software. The book also discusses mistakes in mathematical calculations, and pitfalls in designing and carrying out experiments. Each chapter contains a summary of its key points, to give a quick overview of important potential problems and their solutions in a given area.
GeoMeasurements by Pulsing TDR Cables and Probes

Author: Kevin M O'Connor

Publisher: CRC Press

ISBN: 9781000101614

Category: Science

Page: 416

View: 302

GeoMeasurements by Pulsing TDR Cables and Probes examines Time Domain Reflectometry (TDR) research and provides information on its use as a robust, reliable, and economical production tool. Common uses for TDR technology include telecommunications and power industries, but the text examines applications such as measurement of moisture of unsaturated soils; detection of fluids for leak and pollution; measurement of water levels for hydrological purposes; measurement of water pressures beneath dams; and deformation and stability monitoring of mines, slopes, and structures. Chapters discuss: basic physics of signal generation, transmission, and attenuation along the coaxial cable probe designs and procedures for calibration as well as the variation in probe responses to changes in water content and soil mineralogy variations in waveform characteristics associated with cable, deformation, cable calibration, and installation techniques for metallic cables in rock several cases demonstrating the use of TDR cables in soil as well as weathered and soft rock a rationale for the use of compliant cable in soil the use of metallic cable (MTDR) and optical fiber (OTDR) to monitor response of structures sensor/transducer components, connections from the sensors to the TDR pulser/sampler, and system control methods available software for transmission and analysis of TDR signatures The diverse interest and terminology within the TDR community tends to obscure commonalities and the universal physical principles underlying the technology. The authors seek to crystallize the basic principles among the seemingly divergent specialties using TDR technology in geomaterials. By examining varied experiences, GeoMeasurements by Pulsing TDR Cables and Probes provides a synergistic text necessary to unify the field.