Learning Elastic Stack 6.0

Author: Pranav Shukla

Publisher: Packt Publishing Ltd

ISBN: 9781787285866

Category: Computers

Page: 434

View: 452

Deliver end-to-end real-time distributed data processing solutions by leveraging the power of Elastic Stack 6.0 Key Features - Get to grips with the new features introduced in Elastic Stack 6.0 - Get valuable insights from your data by working with the different components of the Elastic stack such as Elasticsearch, Logstash, Kibana, X-Pack, and Beats - Includes handy tips and techniques to build, deploy and manage your Elastic applications efficiently on-premise or on the cloud Book Description The Elastic Stack is a powerful combination of tools for distributed search, analytics, logging, and visualization of data from medium to massive data sets. The newly released Elastic Stack 6.0 brings new features and capabilities that empower users to find unique, actionable insights through these techniques. This book will give you a fundamental understanding of what the stack is all about, and how to use it efficiently to build powerful real-time data processing applications. After a quick overview of the newly introduced features in Elastic Stack 6.0, you’ll learn how to set up the stack by installing the tools, and see their basic configurations. Then it shows you how to use Elasticsearch for distributed searching and analytics, along with Logstash for logging, and Kibana for data visualization. It also demonstrates the creation of custom plugins using Kibana and Beats. You’ll find out about Elastic X-Pack, a useful extension for effective security and monitoring. We also provide useful tips on how to use the Elastic Cloud and deploy the Elastic Stack in production environments. On completing this book, you’ll have a solid foundational knowledge of the basic Elastic Stack functionalities. You’ll also have a good understanding of the role of each component in the stack to solve different data processing problems. What you will learn - Familiarize yourself with the different components of the Elastic Stack - Get to know the new functionalities introduced in Elastic Stack 6.0 - Effectively build your data pipeline to get data from terabytes or petabytes of data into Elasticsearch and Logstash for searching and logging - Use Kibana to visualize data and tell data stories in real-time - Secure, monitor, and use the alerting and reporting capabilities of Elastic Stack - Take your Elastic application to an on-premise or cloud-based production environment Who this book is for This book is for data professionals who want to get amazing insights and business metrics from their data sources. If you want to get a fundamental understanding of the Elastic Stack for distributed, real-time processing of data, this book will help you. A fundamental knowledge of JSON would be useful, but is not mandatory. No previous experience with the Elastic Stack is required.
Learning Elastic Stack 7.0

Author: Pranav Shukla

Publisher: Packt Publishing Ltd

ISBN: 9781789958539

Category: Computers

Page: 474

View: 871

A beginner's guide to storing, managing, and analyzing data with the updated features of Elastic 7.0 Key Features Gain access to new features and updates introduced in Elastic Stack 7.0 Grasp the fundamentals of Elastic Stack including Elasticsearch, Logstash, and Kibana Explore useful tips for using Elastic Cloud and deploying Elastic Stack in production environments Book Description The Elastic Stack is a powerful combination of tools for techniques such as distributed search, analytics, logging, and visualization of data. Elastic Stack 7.0 encompasses new features and capabilities that will enable you to find unique insights into analytics using these techniques. This book will give you a fundamental understanding of what the stack is all about, and help you use it efficiently to build powerful real-time data processing applications. The first few sections of the book will help you understand how to set up the stack by installing tools, and exploring their basic configurations. You’ll then get up to speed with using Elasticsearch for distributed searching and analytics, Logstash for logging, and Kibana for data visualization. As you work through the book, you will discover the technique of creating custom plugins using Kibana and Beats. This is followed by coverage of the Elastic X-Pack, a useful extension for effective security and monitoring. You’ll also find helpful tips on how to use Elastic Cloud and deploy Elastic Stack in production environments. By the end of this book, you’ll be well versed with the fundamental Elastic Stack functionalities and the role of each component in the stack to solve different data processing problems. What you will learn Install and configure an Elasticsearch architecture Solve the full-text search problem with Elasticsearch Discover powerful analytics capabilities through aggregations using Elasticsearch Build a data pipeline to transfer data from a variety of sources into Elasticsearch for analysis Create interactive dashboards for effective storytelling with your data using Kibana Learn how to secure, monitor and use Elastic Stack’s alerting and reporting capabilities Take applications to an on-premise or cloud-based production environment with Elastic Stack Who this book is for This book is for entry-level data professionals, software engineers, e-commerce developers, and full-stack developers who want to learn about Elastic Stack and how the real-time processing and search engine works for business analytics and enterprise search applications. Previous experience with Elastic Stack is not required, however knowledge of data warehousing and database concepts will be helpful.
Learning Elastic Stack 6.0

Author: Pranav Shukla

Publisher:

ISBN: 1787281868

Category: Computers

Page: 434

View: 109

Deliver end-to-end real-time distributed data processing solutions by leveraging the power of Elastic Stack 6.0 Key Features - Get to grips with the new features introduced in Elastic Stack 6.0 - Get valuable insights from your data by working with the different components of the Elastic stack such as Elasticsearch, Logstash, Kibana, X-Pack, and Beats - Includes handy tips and techniques to build, deploy and manage your Elastic applications efficiently on-premise or on the cloud Book Description The Elastic Stack is a powerful combination of tools for distributed search, analytics, logging, and visualization of data from medium to massive data sets. The newly released Elastic Stack 6.0 brings new features and capabilities that empower users to find unique, actionable insights through these techniques. This book will give you a fundamental understanding of what the stack is all about, and how to use it efficiently to build powerful real-time data processing applications. After a quick overview of the newly introduced features in Elastic Stack 6.0, you'll learn how to set up the stack by installing the tools, and see their basic configurations. Then it shows you how to use Elasticsearch for distributed searching and analytics, along with Logstash for logging, and Kibana for data visualization. It also demonstrates the creation of custom plugins using Kibana and Beats. You'll find out about Elastic X-Pack, a useful extension for effective security and monitoring. We also provide useful tips on how to use the Elastic Cloud and deploy the Elastic Stack in production environments. On completing this book, you'll have a solid foundational knowledge of the basic Elastic Stack functionalities. You'll also have a good understanding of the role of each component in the stack to solve different data processing problems. What you will learn - Familiarize yourself with the different components of the Elastic Stack - Get to know the new functionalities introduced in Elastic Stack 6.0 - Effectively build your data pipeline to get data from terabytes or petabytes of data into Elasticsearch and Logstash for searching and logging - Use Kibana to visualize data and tell data stories in real-time - Secure, monitor, and use the alerting and reporting capabilities of Elastic Stack - Take your Elastic application to an on-premise or cloud-based production environment Who this book is for This book is for data professionals who want to get amazing insights and business metrics from their data sources. If you want to get a fundamental understanding of the Elastic Stack for distributed, real-time processing of data, this book will help you. A fundamental knowledge of JSON would be useful, but is not mandatory. No previous experience with the Elastic Stack is required.
Learning Elastic Stack 7. 0

Author: Pranav Shukla

Publisher:

ISBN: 1789954398

Category:

Page: 474

View: 563

A beginner's guide to storing, managing, and analyzing data with the updated features of Elastic 7.0 Key Features Gain access to new features and updates introduced in Elastic Stack 7.0 Grasp the fundamentals of Elastic Stack including Elasticsearch, Logstash, and Kibana Explore useful tips for using Elastic Cloud and deploying Elastic Stack in production environments Book Description The Elastic Stack is a powerful combination of tools for techniques such as distributed search, analytics, logging, and visualization of data. Elastic Stack 7.0 encompasses new features and capabilities that will enable you to find unique insights into analytics using these techniques. This book will give you a fundamental understanding of what the stack is all about, and help you use it efficiently to build powerful real-time data processing applications. The first few sections of the book will help you understand how to set up the stack by installing tools, and exploring their basic configurations. You'll then get up to speed with using Elasticsearch for distributed searching and analytics, Logstash for logging, and Kibana for data visualization. As you work through the book, you will discover the technique of creating custom plugins using Kibana and Beats. This is followed by coverage of the Elastic X-Pack, a useful extension for effective security and monitoring. You'll also find helpful tips on how to use Elastic Cloud and deploy Elastic Stack in production environments. By the end of this book, you'll be well versed with the fundamental Elastic Stack functionalities and the role of each component in the stack to solve different data processing problems. What you will learn Install and configure an Elasticsearch architecture Solve the full-text search problem with Elasticsearch Discover powerful analytics capabilities through aggregations using Elasticsearch Build a data pipeline to transfer data from a variety of sources into Elasticsearch for analysis Create interactive dashboards for effective storytelling with your data using Kibana Learn how to secure, monitor and use Elastic Stack's alerting and reporting capabilities Take applications to an on-premise or cloud-based production environment with Elastic Stack Who this book is for This book is for entry-level data professionals, software engineers, e-commerce developers, and full-stack developers who want to learn about Elastic Stack and how the real-time processing and search engine works for business analytics and enterprise search applications. Previous experience with Elastic Stack is not required, however knowledge of data warehousing and database concepts will be helpful.
Machine Learning with the Elastic Stack

Author: Rich Collier

Publisher: Packt Publishing Ltd

ISBN: 9781788471770

Category: Computers

Page: 304

View: 191

Elastic has announced the integration of Prelert machine learning technology within its ecosystem allowing real-time generation of business insights from the Elasticsearch data without it leaving the cluster at all. This book will demonstrate these unique features and teach you to perform machine learning on the Elastic Stack without any hassle.
Mastering Elastic Stack

Author: Yuvraj Gupta

Publisher: Packt Publishing Ltd

ISBN: 9781786468055

Category: Computers

Page: 522

View: 201

Get the most out of the Elastic Stack for various complex analytics using this comprehensive and practical guide About This Book Your one-stop solution to perform advanced analytics with Elasticsearch, Logstash, and Kibana Learn how to make better sense of your data by searching, analyzing, and logging data in a systematic way This highly practical guide takes you through an advanced implementation on the ELK stack in your enterprise environment Who This Book Is For This book cater to developers using the Elastic stack in their day-to-day work who are familiar with the basics of Elasticsearch, Logstash, and Kibana, and now want to become an expert at using the Elastic stack for data analytics. What You Will Learn Build a pipeline with help of Logstash and Beats to visualize Elasticsearch data in Kibana Use Beats to ship any type of data to the Elastic stack Understand Elasticsearch APIs, modules, and other advanced concepts Explore Logstash and it's plugins Discover how to utilize the new Kibana UI for advanced analytics See how to work with the Elastic Stack using other advanced configurations Customize the Elastic Stack and plugin development for each of the component Work with the Elastic Stack in a production environment Explore the various components of X-Pack in detail. In Detail Even structured data is useless if it can't help you to take strategic decisions and improve existing system. If you love to play with data, or your job requires you to process custom log formats, design a scalable analysis system, and manage logs to do real-time data analysis, this book is your one-stop solution. By combining the massively popular Elasticsearch, Logstash, Beats, and Kibana, elastic.co has advanced the end-to-end stack that delivers actionable insights in real time from almost any type of structured or unstructured data source. If your job requires you to process custom log formats, design a scalable analysis system, explore a variety of data, and manage logs, this book is your one-stop solution. You will learn how to create real-time dashboards and how to manage the life cycle of logs in detail through real-life scenarios. This book brushes up your basic knowledge on implementing the Elastic Stack and then dives deeper into complex and advanced implementations of the Elastic Stack. We'll help you to solve data analytics challenges using the Elastic Stack and provide practical steps on centralized logging and real-time analytics with the Elastic Stack in production. You will get to grip with advanced techniques for log analysis and visualization. Newly announced features such as Beats and X-Pack are also covered in detail with examples. Toward the end, you will see how to use the Elastic stack for real-world case studies and we'll show you some best practices and troubleshooting techniques for the Elastic Stack. Style and approach This practical guide shows you how to perform advanced analytics with the Elastic stack through real-world use cases. It includes common and some not so common scenarios to use the Elastic stack for data analysis.
Getting Started with Elastic Stack 8.0

Author: Asjad Athick

Publisher: Packt Publishing Ltd

ISBN: 9781800564107

Category: Computers

Page: 474

View: 468

Use the Elastic Stack for search, security, and observability-related use cases while working with large amounts of data on-premise and on the cloud Key FeaturesLearn the core components of the Elastic Stack and how they work togetherBuild search experiences, monitor and observe your environments, and defend your organization from cyber attacksGet to grips with common architecture patterns and best practices for successfully deploying the Elastic StackBook Description The Elastic Stack helps you work with massive volumes of data to power use cases in the search, observability, and security solution areas. This three-part book starts with an introduction to the Elastic Stack with high-level commentary on the solutions the stack can be leveraged for. The second section focuses on each core component, giving you a detailed understanding of the component and the role it plays. You'll start by working with Elasticsearch to ingest, search, analyze, and store data for your use cases. Next, you'll look at Logstash, Beats, and Elastic Agent as components that can collect, transform, and load data. Later chapters help you use Kibana as an interface to consume Elastic solutions and interact with data on Elasticsearch. The last section explores the three main use cases offered on top of the Elastic Stack. You'll start with a full-text search and look at real-world outcomes powered by search capabilities. Furthermore, you'll learn how the stack can be used to monitor and observe large and complex IT environments. Finally, you'll understand how to detect, prevent, and respond to security threats across your environment. The book ends by highlighting architecture best practices for successful Elastic Stack deployments. By the end of this book, you'll be able to implement the Elastic Stack and derive value from it. What you will learnConfigure Elasticsearch clusters with different node types for various architecture patternsIngest different data sources into Elasticsearch using Logstash, Beats, and Elastic AgentBuild use cases on Kibana including data visualizations, dashboards, machine learning jobs, and alertsDesign powerful search experiences on top of your data using the Elastic StackSecure your organization and learn how the Elastic SIEM and Endpoint Security capabilities can helpExplore common architectural considerations for accommodating more complex requirementsWho this book is for Developers and solutions architects looking to get hands-on experience with search, security, and observability-related use cases on the Elastic Stack will find this book useful. This book will also help tech leads and product owners looking to understand the value and outcomes they can derive for their organizations using Elastic technology. No prior knowledge of the Elastic Stack is required.
Modern Approaches in Machine Learning and Cognitive Science: A Walkthrough

Author: Vinit Kumar Gunjan

Publisher: Springer Nature

ISBN: 9783030682910

Category: Technology & Engineering

Page: 515

View: 372

This book provides a systematic and comprehensive overview of machine learning with cognitive science methods and technologies which have played an important role at the core of practical solutions for a wide scope of tasks between handheld apps, industrial process control, autonomous vehicles, environmental policies, life sciences, playing computer games, computational theory, and engineering development. The chapters in this book focus on readers interested in machine learning, cognitive and neuro-inspired computational systems – theories, mechanisms, and architecture, which underline human and animal behaviour, and their application to conscious and intelligent systems. In the current version, it focuses on the successful implementation and step-by-step explanation of practical applications of the domain. It also offers a wide range of inspiring and interesting cutting-edge contributions to applications of machine learning and cognitive science such as healthcare products, medical electronics, and gaming. Overall, this book provides valuable information on effective, cutting-edge techniques and approaches for students, researchers, practitioners, and academicians working in the field of AI, neural network, machine learning, and cognitive science. Furthermore, the purpose of this book is to address the interests of a broad spectrum of practitioners, students, and researchers, who are interested in applying machine learning and cognitive science methods in their respective domains.
Hands-On Machine Learning with R

Author: Brad Boehmke

Publisher: CRC Press

ISBN: 9781000730197

Category: Business & Economics

Page: 456

View: 669

Hands-on Machine Learning with R provides a practical and applied approach to learning and developing intuition into today’s most popular machine learning methods. This book serves as a practitioner’s guide to the machine learning process and is meant to help the reader learn to apply the machine learning stack within R, which includes using various R packages such as glmnet, h2o, ranger, xgboost, keras, and others to effectively model and gain insight from their data. The book favors a hands-on approach, providing an intuitive understanding of machine learning concepts through concrete examples and just a little bit of theory. Throughout this book, the reader will be exposed to the entire machine learning process including feature engineering, resampling, hyperparameter tuning, model evaluation, and interpretation. The reader will be exposed to powerful algorithms such as regularized regression, random forests, gradient boosting machines, deep learning, generalized low rank models, and more! By favoring a hands-on approach and using real word data, the reader will gain an intuitive understanding of the architectures and engines that drive these algorithms and packages, understand when and how to tune the various hyperparameters, and be able to interpret model results. By the end of this book, the reader should have a firm grasp of R’s machine learning stack and be able to implement a systematic approach for producing high quality modeling results. Features: · Offers a practical and applied introduction to the most popular machine learning methods. · Topics covered include feature engineering, resampling, deep learning and more. · Uses a hands-on approach and real world data.
Turning Data into Insight with IBM Machine Learning for z/OS

Author: Samantha Buhler

Publisher: IBM Redbooks

ISBN: 9780738457130

Category: Computers

Page: 180

View: 205

The exponential growth in data over the last decade coupled with a drastic drop in cost of storage has enabled organizations to amass a large amount of data. This vast data becomes the new natural resource that these organizations must tap in to innovate and stay ahead of the competition, and they must do so in a secure environment that protects the data throughout its lifecyle and data access in real time at any time. When it comes to security, nothing can rival IBM® Z, the multi-workload transactional platform that powers the core business processes of the majority of the Fortune 500 enterprises with unmatched security, availability, reliability, and scalability. With core transactions and data originating on IBM Z, it simply makes sense for analytics to exist and run on the same platform. For years, some businesses chose to move their sensitive data off IBM Z to platforms that include data lakes, Hadoop, and warehouses for analytics processing. However, the massive growth of digital data, the punishing cost of security exposures as well as the unprecedented demand for instant actionable intelligence from data in real time have convinced them to rethink that decision and, instead, embrace the strategy of data gravity for analytics. At the core of data gravity is the conviction that analytics must exist and run where the data resides. An IBM client eloquently compares this change in analytics strategy to a shift from "moving the ocean to the boat to moving the boat to the ocean," where the boat is the analytics and the ocean is the data. IBM respects and invests heavily on data gravity because it recognizes the tremendous benefits that data gravity can deliver to you, including reduced cost and minimized security risks. IBM Machine Learning for z/OS® is one of the offerings that decidedly move analytics to Z where your mission-critical data resides. In the inherently secure Z environment, your machine learning scoring services can co-exist with your transactional applications and data, supporting high throughput and minimizing response time while delivering consistent service level agreements (SLAs). This book introduces Machine Learning for z/OS version 1.1.0 and describes its unique value proposition. It provides step-by-step guidance for you to get started with the program, including best practices for capacity planning, installation and configuration, administration and operation. Through a retail example, the book shows how you can use the versatile and intuitive web user interface to quickly train, build, evaluate, and deploy a model. Most importantly, it examines use cases across industries to illustrate how you can easily turn your massive data into valuable insights with Machine Learning for z/OS.
Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics

Author: Leonardo Vanneschi

Publisher: Springer

ISBN: 9783642371899

Category: Computers

Page: 217

View: 109

This book constitutes the refereed proceedings of the 11th European Conference on Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, EvoBIO 2013, held in Vienna, Austria, in April 2013, colocated with the Evo* 2013 events EuroGP, EvoCOP, EvoMUSART and EvoApplications. The 10 revised full papers presented together with 9 poster papers were carefully reviewed and selected from numerous submissions. The papers cover a wide range of topics in the field of biological data analysis and computational biology. They address important problems in biology, from the molecular and genomic dimension to the individual and population level, often drawing inspiration from biological systems in oder to produce solutions to biological problems.
Django Project Blueprints

Author: Asad Jibran Ahmed

Publisher: Packt Publishing Ltd

ISBN: 9781783985432

Category: Computers

Page: 264

View: 206

Develop stunning web application projects with the Django framework About This Book Build six exciting projects and use them as a blueprint for your own work Extend Django's built-in models and forms to add common functionalities into your project, without reinventing the wheel Gain insights into the inner workings of Django to better leverage it Who This Book Is For If you are a Django web developer able to build basic web applications with the framework, then this book is for you. This book will help you gain a deeper understanding of the Django web framework by guiding you through the development of seven amazing web applications. What You Will Learn Create a blogging platform and allow users to share posts on different blogs Prioritise user-submitted content with an intelligent ranking algorithm based on multiple factors Create REST APIs to allow non-browser based usage of your web apps Customize the Django admin to quickly create a full-featured and rich content management system Use Elasticsearch with Django to create blazing fast e-commerce websites Translate your Django applications into multiple languages Dive deep into Django forms and how they work internally In Detail Django is a high-level web framework that eases the creation of complex, database-driven websites. It emphasizes on the reusability and pluggability of components, rapid development, and the principle of don't repeat yourself. It lets you build high-performing, elegant web applications quickly. There are several Django tutorials available online, which take as many shortcuts as possible, but leave you wondering how you can adapt them to your own needs. This guide takes the opposite approach by demonstrating how to work around common problems and client requests, without skipping the important details. If you have built a few Django projects and are on the lookout for a guide to get you past the basics and to solve modern development tasks, this is your book. Seven unique projects will take you through the development process from scratch, leaving no stone unturned. In the first two projects, you will learn everything from adding ranking and voting capabilities to your App to building a multiuser blog platform with a unique twist. The third project tackles APIs with Django and walks us through building a Nagios-inspired infrastructure monitoring system. And that is just the start! The other projects deal with customizing the Django admin to create a CMS for your clients, translating your web applications to multiple languages, and using the Elasticsearch search server with Django to create a high performing e-commerce web site. The seventh chapter includes a surprise usage of Django, and we dive deep into the internals of Django to create something exciting! When you're done, you'll have consistent patterns and techniques that you can build on for many projects to come. Style and approach This easy-to-follow guide is full of examples that will take you through building six very different web applications with Django. The code is broken down into manageable bites and then thoroughly explained.