Optimal Reliability Modeling

Author: Way Kuo

Publisher: John Wiley & Sons

ISBN: 9780471275459

Category: Technology & Engineering

Page: 563

View: 673

Promotes better ways to diagnose, maintain, and improve existing systems. Existing reliability evaluation models are examined with respect to today's complicated engineering systems that have hundreds of thousands of integrated component designs.
Reliability

Author: Wallace R. Blischke

Publisher: John Wiley & Sons

ISBN: 9781118150474

Category: Technology & Engineering

Page: 848

View: 883

Bringing together business and engineering to reliability analysisWith manufactured products exploding in numbers and complexity,reliability studies play an increasingly critical role throughout aproduct's entire life cycle-from design to post-sale support.Reliability: Modeling, Prediction, and Optimization presents aremarkably broad framework for the analysis of the technical andcommercial aspects of product reliability, integrating concepts andmethodologies from such diverse areas as engineering, materialsscience, statistics, probability, operations research, andmanagement. Written in plain language by two highly respectedexperts in the field, this practical work provides engineers,operations managers, and applied statisticians with bothqualitative and quantitative tools for solving a variety ofcomplex, real-world reliability problems. A wealth of examples andcase studies accompanies: * Comprehensive coverage of assessment, prediction, and improvementat each stage of a product's life cycle * Clear explanations of modeling and analysis for hardware rangingfrom a single part to whole systems * Thorough coverage of test design and statistical analysis ofreliability data * A special chapter on software reliability * Coverage of effective management of reliability, product support,testing, pricing, and related topics * Lists of sources for technical information, data, and computerprograms * Hundreds of graphs, charts, and tables, as well as over 500references * PowerPoint slides are available from the Wiley editorialdepartment.
Stochastic Reliability Modeling, Optimization and Applications

Author: Syouji Nakamura

Publisher: World Scientific

ISBN: 9789814277433

Category: Mathematics

Page: 317

View: 956

"Reliability theory and applications become major concerns of engineers and managers engaged in making high quality products and designing highly reliable systems. This book aims to survey new research topics in reliability theory and useful applied techniques in reliability engineering." "The reader will learn new topics and techniques, and how to apply reliability models to actual ones. The book will serve as an essential guide to a subject of study for graduate students and researchers and as a useful guide for reliability engineers engaged not only in maintenance work but also in management and computer works." --Book Jacket.
Reliability Modelling and Optimization of Warm Standby Systems

Author: Rui Peng

Publisher: Springer Nature

ISBN: 9789811617928

Category: Technology & Engineering

Page: 166

View: 655

This book introduces the reliability modelling and optimization of warm standby systems. Warm standby is an attractive redundancy technique, as it consumes less energy than hot standby and switches into the active state faster than cold standby. Since a warm standby component experiences different failure rates in the standby state and active state, the reliability evaluation is challenging and the existing works are only restricted to very special cases. By adapting the decision diagrams, this book proposes the methodology to evaluate the reliability of different types of warm standby systems and studies the reliability optimization. Compared with existing works, the proposed methods allow the system to have an arbitrary number of components and allow the failure time distribution of components to observe arbitrary distributions. From this book, the readers can not only learn how to evaluate and optimize the reliability of warm standby systems but also use the methods to study the reliability of other complex systems.
Reliability Models of Complex Systems for Robots and Automation

Author: Hamed Fazlollahtabar

Publisher: CRC Press

ISBN: 9781351337328

Category: Technology & Engineering

Page: 96

View: 823

Availability of a system is a crucial factor for planning and optimization. The concept is more challenging for modern systems such as robots and autonomous systems consisting of a complex configuration of components. As complex systems have become global and essential in today’s society, their reliable design and the determination of their availability have turned into a very important task for managers and engineers. Reliability Models of Complex Systems for Robots and Automation offers different models and approaches for reliability evaluation and optimization of a complex autonomous system. Comprehensive fault tree analysis on the critical components of industrial robots and its integration with the reliability block diagram approach is designed in order to investigate the robot system reliability. The cost and hazard decision tree are integrated for the first time in an approach to evaluate the reliability of a complex system. Considers a complex production system composing of several autonomous robots Develops binary state reliability evaluation model for a complex system Introduces new concepts of hazard decision tree Proposes fault tree and reliability block diagram for complex robotic systems Develops stochastic process based reliability evaluation and optimization models Today’s competitive world with increasing customer demands for highly reliable products makes reliability engineering a more challenging task. Reliability analysis is one of the main tools to ensure agreed delivery deadlines which in turn maintains certainty in real tangible factors such as customer goodwill and company reputation.
Optimal Reliability Design

Author: Way Kuo

Publisher: Cambridge University Press

ISBN: 0521781272

Category: Mathematics

Page: 426

View: 745

Optimal Reliability Design provides a detailed introduction to systems reliability and reliability optimization. State-of-the-art techniques for maximizing system reliability are described, focusing on component reliability enhancement and redundancy arrangement. The authors present several case studies and show how optimization techniques are applied in practice. They also pay particular attention to finding methods that give the optimal trade-off between reliability and cost. The book is suitable for use on graduate-level courses in reliability engineering and operations research. It will also be a valuable reference for practising engineers.
Advanced Reliability Modeling II

Author: Tadashi Dohi

Publisher: World Scientific

ISBN: 9789812567581

Category: Technology & Engineering

Page: 814

View: 716

The 2006 Asian International Workshop on Advanced Reliability Modeling (AIWARM) is the second symposium in a series of biennial workshops for the dissemination of state-of-art research and the presentation of practice in reliability and maintenance engineering in Asia. It brings together researchers and engineers from not only Asian countries but also all over world to discuss the state of research and practice in dealing with both reliability issues at the system design phase and maintenance issues at the system operation phase. The theme of AIWARM 2006 is ?reliability testing and improvement?. The contributions in this volume cover all the main topics in reliability and maintenance engineering, providing an in-depth presentation of theory and practice.
Advanced Reliability Models and Maintenance Policies

Author: Toshio Nakagawa

Publisher: Springer Science & Business Media

ISBN: 9781848002944

Category: Technology & Engineering

Page: 246

View: 792

Reliability theory is a major concern for engineers and managers engaged in making high quality products and designing highly reliable systems. “Advanced Reliability Models and Maintenance Policies” is a survey of new research topics in reliability theory and optimization techniques in reliability engineering. The book introduces partition and redundant problems within reliability models, and provides optimization techniques. The book also indicates how to perform maintenance in a finite time span and at failure detection, and to apply recovery techniques for computer systems. New themes such as reliability complexity and service reliability in reliability theory are theoretically proposed, and optimization problems in management science using reliability techniques are presented. The book is an essential guide for graduate students and researchers in reliability theory, and a valuable reference for reliability engineers engaged both in maintenance work and in management and computer systems.
Optimization Models in Software Reliability

Author: Anu G. Aggarwal

Publisher: Springer Nature

ISBN: 9783030789190

Category: Technology & Engineering

Page: 373

View: 694

The book begins with an introduction to software reliability, models and techniques. The book is an informative book covering the strategies needed to assess software failure behaviour and its quality, as well as the application of optimization tools for major managerial decisions related to the software development process. It features a broad range of topics including software reliability assessment and apportionment, optimal allocation and selection decisions and upgradations problems. It moves through a variety of problems related to the evolving field of optimization of software reliability engineering, including software release time, resource allocating, budget planning and warranty models, which are each explored in depth in dedicated chapters. This book provides a comprehensive insight into present-day practices in software reliability engineering, making it relevant to students, researchers, academics and practising consultants and engineers.
Advanced Reliability Modeling

Author: Tadashi Dohi

Publisher: World Scientific

ISBN: 9789812388711

Category: Technology & Engineering

Page: 645

View: 360

The 2004 Asian International Workshop on Advanced Reliability Modeling is a symposium for the dissemination of state-of-the-art research and the presentation of practice in reliability engineering and related issues in Asia. It brings together researchers, scientists and practitioners from Asian countries to discuss the state of research and practice in dealing with reliability issues at the system design (modeling) level, and to jointly formulate an agenda for future research in this engineering area. The proceedings cover all the key topics in reliability, maintainability and safety engineering, providing an in-depth presentation of theory and practice.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings? (ISTP? / ISI Proceedings)? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences
Software Reliability Modeling

Author: Shigeru Yamada

Publisher: Springer Science & Business Media

ISBN: 9784431545651

Category: Mathematics

Page: 90

View: 839

Software reliability is one of the most important characteristics of software product quality. Its measurement and management technologies during the software product life cycle are essential to produce and maintain quality/reliable software systems. Part 1 of this book introduces several aspects of software reliability modeling and its applications. Hazard rate and nonhomogeneous Poisson process (NHPP) models are investigated particularly for quantitative software reliability assessment. Further, imperfect debugging and software availability models are discussed with reference to incorporating practical factors of dynamic software behavior. Three software management problems are presented as application technologies of software reliability models: the optimal software release problem, the statistical testing-progress control, and the optimal testing-effort allocation problem. Part 2 of the book describes several recent developments in software reliability modeling and their applications as quantitative techniques for software quality/reliability measurement and assessment. The discussion includes a quality engineering analysis of human factors affecting software reliability during the design review phase, which is the upper stream of software development, as well as software reliability growth models based on stochastic differential equations and discrete calculus during the testing phase, which is the lower stream. The final part of the book provides an illustration of quality-oriented software management analysis by applying the multivariate analysis method and the existing software reliability growth models to actual process monitoring data.