Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management

Author: Heba I. Mohamed

Publisher: Springer Nature

ISBN: 9783030665876

Category: Science

Page: 672

View: 139

Abiotic and biotic stress factors, including drought, salinity, waterlog, temperature extremes, mineral nutrients, heavy metals, plant diseases, nematodes, viruses, and diseases, adversely affect growth as well as yield of crop plants worldwide. Plant growth-promoting microorganisms (PGPM) are receiving increasing attention from agronomists and environmentalists as candidates to develop an effective, eco-friendly, and sustainable alternative to conventional agricultural (e.g., chemical fertilizers and pesticide) and remediation (e.g., chelators-enhanced phytoremediation) methods employed to deal with climate change-induced stresses. Recent studies have shown that plant growth-promoting bacteria (PGPB), rhizobia, arbuscular mycorrhizal fungi (AMF), cyanobacteria have great potentials in the management of various agricultural and environmental problems. This book provides current research of biofertilizers and the role of microorganisms in plant health, with specific emphasis on the mitigating strategies to combat plant stresses.
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Author: R. Z. Sayyed

Publisher: Springer Nature

ISBN: 9789811365362

Category: Science

Page: 362

View: 143

Increasing agro productivity to feed a growing global population under the present climate scenario requires optimizing the use of resources and adopting sustainable agricultural production. This can be achieved by using plant beneficial bacteria, i.e., those bacteria that enhance plant growth under abiotic stress conditions, and more specifically, microorganisms such as plant growth promoting rhizobacteria (PGPR), which are the most promising candidates in this regard. Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to do so, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.
Bacteria in Agrobiology: Stress Management

Author: Dinesh K. Maheshwari

Publisher: Springer Science & Business Media

ISBN: 9783642234644

Category: Science

Page: 341

View: 506

The future of agriculture strongly depends on our ability to enhance productivity without sacrificing long-term production potential. An ecologically and economically sustainable strategy is the application of microorganisms, such as the diverse bacterial species of plant growth promoting bacteria (PGPB). The use of these bio-resources for the enhancement of crop productivity is gaining worldwide importance. "Bacteria in Agrobiology: Stress Management" covers the major aspects on PGPR in amelioration of both abiotic and biotic stresses. PGPR mediated in priming of plant defense reactions, nutrient availability and management in saline and cold environment, hormonal signaling, ACC deaminase and its role in ethylene regulation under harsh conditions are suitably described.
Plant Growth Promoting Rhizobacteria for Sustainable Stress Management

Author: R. Z. Sayyed

Publisher: Springer Nature

ISBN: 9789811369865

Category: Science

Page: 419

View: 711

Attaining sustainable agricultural production while preserving environmental quality, agro-ecosystem functions and biodiversity represents a major challenge for current agricultural practices; further, the traditional use of chemical inputs (fertilizers, pesticides, nutrients etc.) poses serious threats to crop productivity, soil fertility and the nutritional value of farm produce. Given these risks, managing pests and diseases, maintaining agro-ecosystem health, and avoiding health issues for humans and animals have now become key priorities. The use of PGPR as biofertilizers, plant growth promoters, biopesticides, and soil and plant health managers has attracted considerable attention among researchers, agriculturists, farmers, policymakers and consumers alike. Using PGPR as bioinoculants can help meet the expected demand for global agricultural productivity to feed the world’s booming population, which is predicted to reach roughly 9 billion by 2050. However, to provide effective bioinoculants, PGPR strains must be safe for the environment, offer considerable plant growth promotion and biocontrol potential, be compatible with useful soil rhizobacteria, and be able to withstand various biotic and abiotic stresses. Accordingly, the book also highlights the need for better strains of PGPR to complement increasing agro-productivity.
Plant Microbiome: Stress Response

Author: Dilfuza Egamberdieva

Publisher: Springer

ISBN: 9789811055140

Category: Technology & Engineering

Page: 384

View: 409

This book presents state-of-the-art research on the many facets of the plant microbiome, including diversity, ecology, physiology and genomics, as well as molecular mechanisms of plant-microbe interactions. Topics considered include the importance of microbial secondary metabolites in stimulating plant growth, induced systemic resistance, tolerance to abiotic stress, and biological control of plant pathogens. The respective contributions show how microbes help plants to cope with abiotic stresses, and represent significant progress toward understanding the complex regulatory networks critical to host-microbe interaction and plant adaptation in extreme environments. New insights into the mechanisms of microbial actions in inducing plant stress tolerance open new doors for improving the efficacy of microbial strategies, and could produce new ways of economically increasing crop yields without harming the environment. As such, this book offers an essential resource for students and researchers with an interest in plant-microbe interaction, as well as several possibilities for employing the plant microbiome in the enhancement of crop productivity under future climate change scenarios.
Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture

Author: R. Z. Sayyed

Publisher: Springer

ISBN: 9789811367908

Category: Technology & Engineering

Page: 334

View: 366

Sustainable increase in agricultural production while keeping the environmental quality, agro-ecosystem function and biodiversity is a real challenge in current agricultural practices. Application of PGPR can help in meeting the expected demand for increasing agricultural productivity to feed the world’s booming population. Global concern over the demerits of chemicals in agriculture has diverted the attention of researchers towards sustainable agriculture by utilizing the potential of Plant Growth Promoting Rhizobacteria (PGPR). Use of PGPR as biofertilizers, biopesticides, soil, and plant health managers has gained considerable agricultural and commercial significance. The book Plant Growth Promoting Rhizobacteria (PGPR): Prospects for Sustainable Agriculture has contributions in the form of book chapter from 25 eminent global researchers, that discusses about the PGPRs and their role in growth promotion of various crop plants, suppression of wide range of phytopathogens, their formulation, effect of various factors on growth and performance of PGPR, assessment of diversity of PGPR through microsatellites and role of PGPR in mitigating biotic and abiotic stress.This book will be helpful for students, teachers, researchers, and entrepreneurs involved in PGPR and allied fields. The book will be highly useful to researchers, teachers, students, entrepreneurs, and policymakers.
Unravelling Plant-Microbe Synergy

Author: Dinesh Chandra

Publisher: Academic Press

ISBN: 9780323985321

Category: Science

Page: 316

View: 298

Unravelling Plant-Microbe Synergy focuses on agriculturally important microorganisms (AIM’s) that are indigenous to soil and roots of the plant. These microbes contributing to nutrient balance, growth regulators, suppressing pathogens, alleviate stress response, orchestrating immune response and improving crop performance as they are offering sustainable and alternative solutions to the use of chemicals in agriculture. As plant microbe synergy is an enthralling subject, is multidisciplinary in nature, and concerns scientists involved in applied, and environmental microbiology and plant health and plant protection, Unravelling Plant-Microbe Synergy is an ideal resource that emphasizes the current trends of, and probable future of, microbes mediated amelioration of abiotic and biotic stress, agriculture sustainability, induced systemic tolerance and plant health protection. Unravelling Plant-Microbe Synergy discloses the microbial interaction for stress management and provides a better understanding to know the recent mechanisms to cope these environmental stresses. Unravelling Plant-Microbe Synergy bridges the gap in recent advances in the microbes interaction and rhizosphere engineering. Emphasizes the plant microbes interactions, induced systemic tolerance, stress responsive genes and diversity of microorganisms Illustrates the current impact of climate change on plant productivity along with mitigation strategies Provides a two-way interactive approach to both plants and microbes, and includes multi-omics approaches
Sustainable Horticulture

Author: Musa Seymen

Publisher: Academic Press

ISBN: 9780323916769

Category: Science

Page: 522

View: 191

Sustainable Horticulture: Microbial Inoculants and Stress Interaction gives insights into the applications and formulations of microbial inoculants. In recent years, the optimum yields of horticultural plants largely influenced by rising global temperature, biotic stress (attack of pathogens) and abiotic stresses has created extra pressure for the horticulturalist to meet the need of optimum yield production for the burgeoning global population. However, the challenges of biotic and abiotic stress factors mitigated by traditional physical or chemicals methods include high application cost and adverse impact on quality limit the frequent use, hence the solutions in this book create new avenues for progress. This book covers those challenges and how microbial based bio inoculants are broadly used in horticulture to mitigate the challenges of biotic and abiotic stresses. It provides an important contribution on how to apply efficient beneficial microbes (microbial inoculants) for a sustainable society. Provides quality chapters from the leading academician and researchers from the different parts of the world Gives insights on the applications and formulations of microbial inoculants Covers the challenges of biotic and abiotic stress factors mitigated by traditional physical or chemicals methods that are costly
Microbial Biocontrol

Author: Ajay Kumar

Publisher: Springer Nature

ISBN: 9783030875121

Category: Agricultural biotechnology

Page: 373

View: 302

This first volume of a two-volume work presents the manifold applications of beneficial microbes and microbiomes in plant growth promotion, in enhancing crop resilience and in control of phytopathogens through microbial antagonists. In-depth insights into latest technologies such as biopriming of seeds and soil inoculation of rhizosphere microorganisms are provided. The two-volume work "Microbial Biocontrol" introduces mechanisms of plant-microbe interactions and explores latest strategies of how microbes can be applied in biocontrol and management of plant pathogens, replacing chemical fertilizers and pesticides. The book covers different groups of microorganisms such as bacteria, fungi, but also the interplay of entire microbiomes, and reviews their specific benefits in crop growth promotion, in enhancing the plants tolerance against biotic and abiotic stress as well as in post-harvest management of various plant diseases. Novel tools such as CRISPR/Cas9 and microbe derived nanoparticles are also addressed besides the legal aspects of biocontrol applications. Today, rising global population and changing climatic conditions emerge as a major challenge for agronomist farmers and researchers in fulfilling the requirements of global food production. The conventional agricultural practices utilize undistributed use of chemical fertilizers and pesticides to enhance growth and yield of agricultural products and fresh foods, but their extensive and continuous use have led to a range of negative consequences on the food quality and safety, to environment as well as to human and animal health. Microbial biocontrol applications are presented as a solution, paving the way to a sustainable agriculture in compliance with the UN Sustainable Development Goals (SDG). The book addresses researchers in academia and agriculture.
Plant Protection

Author: Ravindra Soni

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 9783110771558

Category: Technology & Engineering

Page: 624

View: 426

Phyto-pathogens are one of the dominating components which badly affect crop production. In light of the global food demand, sustainable agricultural plans utilizing agrochemicals became necessary. The role of beneficial microbes in the defense priming of host plants has been well documented. This book details new aspects of microbial-assisted plant protection and their role in agricultural production, economy, and environmental sustainability.
Plant Performance Under Environmental Stress

Author: Azamal Husen

Publisher: Springer Nature

ISBN: 9783030785215

Category: Science

Page: 606

View: 720

Global climate change is bound to create a number of abiotic and biotic stresses in the environment, which would affect the overall growth and productivity of plants. Like other living beings, plants have the ability to protect themselves by evolving various mechanisms against stresses, despite being sessile in nature. They manage to withstand extremes of temperature, drought, flooding, salinity, heavy metals, atmospheric pollution, toxic chemicals and a variety of living organisms, especially viruses, bacteria, fungi, nematodes, insects and arachnids and weeds. Incidence of abiotic stresses may alter the plant-pest interactions by enhancing susceptibility of plants to pathogenic organisms. These interactions often change plant response to abiotic stresses. Plant growth regulators modulate plant responses to biotic and abiotic stresses, and regulate their growth and developmental cascades. A number of physiological and molecular processes that act together in a complex regulatory network, further manage these responses. Crosstalk between autophagy and hormones also occurs to develop tolerance in plants towards multiple abiotic stresses. Similarly, biostimulants, in combination with correct agronomic practices, have shown beneficial effects on plant metabolism due to the hormonal activity that stimulates different metabolic pathways. At the same time, they reduce the use of agrochemicals and impart tolerance to biotic and abiotic stress. Further, the use of bio- and nano-fertilizers seem to hold promise to improve the nutrient use efficiency and hence the plant yield under stressful environments. It has also been shown that the seed priming agents impart stress tolerance. Additionally, tolerance or resistance to stress may also be induced by using specific chemical compounds such as polyamines, proline, glycine betaine, hydrogen sulfide, silicon, β-aminobutyric acid, γ-aminobutyric acid and so on. This book discusses the advances in plant performance under stressful conditions. It should be very useful to graduate students, researchers, and scientists in the fields of botanical science, crop science, agriculture, horticulture, ecological and environmental science.
Microbial Management of Plant Stresses

Author: Ajay Kumar

Publisher: Woodhead Publishing

ISBN: 9780323859202

Category: Technology & Engineering

Page: 280

View: 862

Microbial Management of Plant Stresses: Current Trends, Application and Challenges explores plant microbiota including isolated microbial communities that have been used to study the functional capacities, ecological structure and dynamics of the plant-microbe interaction with focus on agricultural crops. Presenting multiple examples and evidence of the potential genetic flexibility of microbial systems to counteract the climate induced stresses associated with their host as a part of indigenous system, this book presents strategies and approaches for improvement of microbiome. As climate changes have altered the global carbon cycling and ecological dynamics, the regular and periodic occurrences of severe salinity, drought, and heat stresses across the different regimes of the agro-ecological zones have put additional constraints on agricultural ecosystem to produce efficient foods and other derived products for rapidly growing world population through low cost and sustainable technology. Furthermore chemical amendments, agricultural inputs and other innovative technologies although may have fast results with fruitful effects for enhancing crop productivity but also have other ecological drawbacks and environmental issues and offer limited use opportunities. Microbial formulations and/or microbial consortia deploying two or multiple partners have been frequently used for mitigation of various stresses, however, field success is often variable and improvement Smart, knowledge-driven selection of microorganisms is needed as well as the use of suitable delivery approaches and formulations. Microbial Management of Plant Stresses: Current Trends, Application and Challenges presents the functional potential of plant microbiota to address current challenges in crop production addressing this urgent need to bring microbial innovations into practice. Demonstrates microbial ecosystems as an indigenous system for improving plant growth, health and stress resilience Covers all the novel aspects of microbial regulatory mechanism. Key challenges associated with microbial delivery and successful establishment for plant growth promotion and stress avoidance Explores plant microbiome and the modulation of plant defense and ecological dynamics under stressed environment