Smart Applications and Data Analysis

Author: Mohamed Hamlich

Publisher: Springer Nature

ISBN: 9783030451837

Category: Computers

Page: 362

View: 804

This volume constitutes refereed proceedings of the Third International Conference on Smart Applications and Data Analysis, SADASC 2020, held in Marrakesh, Morocco. Due to the COVID-19 pandemic the conference has been postponed to June 2020. The 24 full papers and 3 short papers presented were thoroughly reviewed and selected from 44 submissions. The papers are organized according to the following topics: ontologies and meta modeling; cyber physical systems and block-chains; recommender systems; machine learning based applications; combinatorial optimization; simulations and deep learning.
Big Data Intelligence for Smart Applications

Author: Youssef Baddi

Publisher: Springer Nature

ISBN: 9783030879549

Category: Big data


View: 658

Today, the use of machine intelligence, expert systems, and analytical technologies combined with Big Data is the natural evolution of both disciplines. As a result, there is a pressing need for new and innovative algorithms to help us find effective and practical solutions for smart applications such as smart cities, IoT, healthcare, and cybersecurity. This book presents the latest advances in big data intelligence for smart applications. It explores several problems and their solutions regarding computational intelligence and big data for smart applications. It also discusses new models, practical solutions, and technological advances related to developing and transforming cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.
Research Anthology on Big Data Analytics, Architectures, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

ISBN: 9781668436639

Category: Computers

Page: 1988

View: 854

Society is now completely driven by data with many industries relying on data to conduct business or basic functions within the organization. With the efficiencies that big data bring to all institutions, data is continuously being collected and analyzed. However, data sets may be too complex for traditional data-processing, and therefore, different strategies must evolve to solve the issue. The field of big data works as a valuable tool for many different industries. The Research Anthology on Big Data Analytics, Architectures, and Applications is a complete reference source on big data analytics that offers the latest, innovative architectures and frameworks and explores a variety of applications within various industries. Offering an international perspective, the applications discussed within this anthology feature global representation. Covering topics such as advertising curricula, driven supply chain, and smart cities, this research anthology is ideal for data scientists, data analysts, computer engineers, software engineers, technologists, government officials, managers, CEOs, professors, graduate students, researchers, and academicians.
Big Data Analytics and Intelligent Techniques for Smart Cities

Author: Kolla Bhanu Prakash

Publisher: CRC Press

ISBN: 9781000413366

Category: Technology & Engineering

Page: 296

View: 835

Big Data Analytics and Intelligent Techniques for Smart Cities covers fundamentals, advanced concepts, and applications of big data analytics for smart cities in a single volume. This comprehensive reference text discusses big data theory modeling and simulation for smart cities and examines case studies in a single volume. The text discusses how to develop a smart city and state-of-the-art system design, system verification, real-time control and adaptation, Internet of Things, and testbeds. It covers applications of smart cities as they relate to smart transportation/connected vehicle (CV) and intelligent transportation systems (ITS) for improved mobility, safety, and environmental protection. It will be useful as a reference text for graduate students in different areas including electrical engineering, computer science engineering, civil engineering, and electronics and communications engineering. Features: Technologies and algorithms associated with the application of big data for smart cities Discussions on big data theory modeling and simulation for smart cities Applications of smart cities as they relate to smart transportation and intelligent transportation systems (ITS) Discussions on concepts including smart education, smart culture, and smart transformation management for social and societal changes
Big Data Science and Analytics for Smart Sustainable Urbanism

Author: Simon Elias Bibri

Publisher: Springer

ISBN: 9783030173128

Category: Political Science

Page: 337

View: 867

We are living at the dawn of what has been termed ‘the fourth paradigm of science,’ a scientific revolution that is marked by both the emergence of big data science and analytics, and by the increasing adoption of the underlying technologies in scientific and scholarly research practices. Everything about science development or knowledge production is fundamentally changing thanks to the ever-increasing deluge of data. This is the primary fuel of the new age, which powerful computational processes or analytics algorithms are using to generate valuable knowledge for enhanced decision-making, and deep insights pertaining to a wide variety of practical uses and applications. This book addresses the complex interplay of the scientific, technological, and social dimensions of the city, and what it entails in terms of the systemic implications for smart sustainable urbanism. In concrete terms, it explores the interdisciplinary and transdisciplinary field of smart sustainable urbanism and the unprecedented paradigmatic shifts and practical advances it is undergoing in light of big data science and analytics. This new era of science and technology embodies an unprecedentedly transformative and constitutive power—manifested not only in the form of revolutionizing science and transforming knowledge, but also in advancing social practices, producing new discourses, catalyzing major shifts, and fostering societal transitions. Of particular relevance, it is instigating a massive change in the way both smart cities and sustainable cities are studied and understood, and in how they are planned, designed, operated, managed, and governed in the face of urbanization. This relates to what has been dubbed data-driven smart sustainable urbanism, an emerging approach based on a computational understanding of city systems and processes that reduces urban life to logical and algorithmic rules and procedures, while also harnessing urban big data to provide a more holistic and integrated view or synoptic intelligence of the city. This is increasingly being directed towards improving, advancing, and maintaining the contribution of both sustainable cities and smart cities to the goals of sustainable development. This timely and multifaceted book is aimed at a broad readership. As such, it will appeal to urban scientists, data scientists, urbanists, planners, engineers, designers, policymakers, philosophers of science, and futurists, as well as all readers interested in an overview of the pivotal role of big data science and analytics in advancing every academic discipline and social practice concerned with data–intensive science and its application, particularly in relation to sustainability.
Network Data Analytics

Author: K. G. Srinivasa

Publisher: Springer

ISBN: 9783319778006

Category: Computers

Page: 398

View: 751

In order to carry out data analytics, we need powerful and flexible computing software. However the software available for data analytics is often proprietary and can be expensive. This book reviews Apache tools, which are open source and easy to use. After providing an overview of the background of data analytics, covering the different types of analysis and the basics of using Hadoop as a tool, it focuses on different Hadoop ecosystem tools, like Apache Flume, Apache Spark, Apache Storm, Apache Hive, R, and Python, which can be used for different types of analysis. It then examines the different machine learning techniques that are useful for data analytics, and how to visualize data with different graphs and charts. Presenting data analytics from a practice-oriented viewpoint, the book discusses useful tools and approaches for data analytics, supported by concrete code examples. The book is a valuable reference resource for graduate students and professionals in related fields, and is also of interest to general readers with an understanding of data analytics.
Machine Learning and Big Data Analytics Paradigms: Analysis, Applications and Challenges

Author: Aboul Ella Hassanien

Publisher: Springer Nature

ISBN: 9783030593384

Category: Computers

Page: 648

View: 854

This book is intended to present the state of the art in research on machine learning and big data analytics. The accepted chapters covered many themes including artificial intelligence and data mining applications, machine learning and applications, deep learning technology for big data analytics, and modeling, simulation, and security with big data. It is a valuable resource for researchers in the area of big data analytics and its applications.
Smart Cities: A Data Analytics Perspective

Author: Mohammad Ayoub Khan

Publisher: Springer Nature

ISBN: 9783030609221

Category: Technology & Engineering

Page: 319

View: 747

This book offers practical as well as conceptual knowledge of the latest trends, tools, techniques and methodologies of data analytics in smart cities. The smart city is an advanced technological area that is capable of understanding the environment by examining the data to improve the livability. The smart cities allow different kinds of wireless sensors to gather massive amounts, full speed and a broad range of city data. The smart city has a focus on data analytics facilitated through the IoT platforms. There is a need to customize the IoT architecture and infrastructures to address needs in application of specific domains of smart cities such as transportation, traffic, health and, environment. The smart cities will provide next generation development technologies for urbanization that includes the need of environmental sustainability, personalization, mobility, optimum energy utilization, better administrative services and higher quality of life. Each chapter presents the reader with an in-depth investigation regarding the possibility of data analytics perspective in smart cities. The book presents cutting-edge and future perspectives of smart cities, where industry experts, scientists, and scholars exchange ideas and experience about surrounding frontier technologies, breakthrough and innovative solutions and applications.
Advances in Intelligent Data Analysis XIX

Author: Pedro Henriques Abreu

Publisher: Springer Nature

ISBN: 9783030742515

Category: Computers

Page: 454

View: 508

This book constitutes the proceedings of the 19th International Symposium on Intelligent Data Analysis, IDA 2021, which was planned to take place in Porto, Portugal. Due to the COVID-19 pandemic the conference was held online during April 26-28, 2021. The 35 papers included in this book were carefully reviewed and selected from 113 submissions. The papers were organized in topical sections named: modeling with neural networks; modeling with statistical learning; modeling language and graphs; and modeling special data formats.
Machine Learning for Big Data Analysis

Author: Siddhartha Bhattacharyya

Publisher: Walter de Gruyter GmbH & Co KG

ISBN: 9783110551433

Category: Computers

Page: 193

View: 754

This volume comprises six well-versed contributed chapters devoted to report the latest fi ndings on the applications of machine learning for big data analytics. Big data is a term for data sets that are so large or complex that traditional data processing application software is inadequate to deal with them. The possible challenges in this direction include capture, storage, analysis, data curation, search, sharing, transfer, visualization, querying, updating and information privacy. Big data analytics is the process of examining large and varied data sets - i.e., big data - to uncover hidden patterns, unknown correlations, market trends, customer preferences and other useful information that can help organizations make more-informed business decisions. This volume is intended to be used as a reference by undergraduate and post graduate students of the disciplines of computer science, electronics and telecommunication, information science and electrical engineering. THE SERIES: FRONTIERS IN COMPUTATIONAL INTELLIGENCE The series Frontiers In Computational Intelligence is envisioned to provide comprehensive coverage and understanding of cutting edge research in computational intelligence. It intends to augment the scholarly discourse on all topics relating to the advances in artifi cial life and machine learning in the form of metaheuristics, approximate reasoning, and robotics. Latest research fi ndings are coupled with applications to varied domains of engineering and computer sciences. This field is steadily growing especially with the advent of novel machine learning algorithms being applied to different domains of engineering and technology. The series brings together leading researchers that intend to continue to advance the fi eld and create a broad knowledge about the most recent research.
Encyclopedia of Information Science and Technology, Fifth Edition

Author: Khosrow-Pour D.B.A., Mehdi

Publisher: IGI Global

ISBN: 9781799834809

Category: Computers

Page: 1966

View: 876

The rise of intelligence and computation within technology has created an eruption of potential applications in numerous professional industries. Techniques such as data analysis, cloud computing, machine learning, and others have altered the traditional processes of various disciplines including healthcare, economics, transportation, and politics. Information technology in today’s world is beginning to uncover opportunities for experts in these fields that they are not yet aware of. The exposure of specific instances in which these devices are being implemented will assist other specialists in how to successfully utilize these transformative tools with the appropriate amount of discretion, safety, and awareness. Considering the level of diverse uses and practices throughout the globe, the fifth edition of the Encyclopedia of Information Science and Technology series continues the enduring legacy set forth by its predecessors as a premier reference that contributes the most cutting-edge concepts and methodologies to the research community. The Encyclopedia of Information Science and Technology, Fifth Edition is a three-volume set that includes 136 original and previously unpublished research chapters that present multidisciplinary research and expert insights into new methods and processes for understanding modern technological tools and their applications as well as emerging theories and ethical controversies surrounding the field of information science. Highlighting a wide range of topics such as natural language processing, decision support systems, and electronic government, this book offers strategies for implementing smart devices and analytics into various professional disciplines. The techniques discussed in this publication are ideal for IT professionals, developers, computer scientists, practitioners, managers, policymakers, engineers, data analysts, and programmers seeking to understand the latest developments within this field and who are looking to apply new tools and policies in their practice. Additionally, academicians, researchers, and students in fields that include but are not limited to software engineering, cybersecurity, information technology, media and communications, urban planning, computer science, healthcare, economics, environmental science, data management, and political science will benefit from the extensive knowledge compiled within this publication.
Machine Learning and IoT for Intelligent Systems and Smart Applications

Author: Madhumathy P

Publisher: CRC Press

ISBN: 9781000484960

Category: Computers

Page: 242

View: 300

The fusion of AI and IoT enables the systems to be predictive, prescriptive, and autonomous, and this convergence has evolved the nature of emerging applications from being assisted to augmented, and ultimately to autonomous intelligence. This book discusses algorithmic applications in the field of machine learning and IoT with pertinent applications. It further discusses challenges and future directions in the machine learning area and develops understanding of its role in technology, in terms of IoT security issues. Pertinent applications described include speech recognition, medical diagnosis, optimizations, predictions, and security aspects. Features: Focuses on algorithmic and practical parts of the artificial intelligence approaches in IoT applications. Discusses supervised and unsupervised machine learning for IoT data and devices. Presents an overview of the different algorithms related to Machine learning and IoT. Covers practical case studies on industrial and smart home automation. Includes implementation of AI from case studies in personal and industrial IoT. This book aims at Researchers and Graduate students in Computer Engineering, Networking Communications, Information Science Engineering, and Electrical Engineering.