Software Reliability Assessment with OR Applications

Author: P.K. Kapur

Publisher: Springer Science & Business Media

ISBN: 9780857292049

Category: Technology & Engineering

Page: 548

View: 494

Software Reliability Assessment with OR Applications is a comprehensive guide to software reliability measurement, prediction, and control. It provides a thorough understanding of the field and gives solutions to the decision-making problems that concern software developers, engineers, practitioners, scientists, and researchers. Using operations research techniques, readers will learn how to solve problems under constraints such as cost, budget and schedules to achieve the highest possible quality level. Software Reliability Assessment with OR Applications is a comprehensive text on software engineering and applied statistics, state-of-the art software reliability modeling, techniques and methods for reliability assessment, and related optimization problems. It addresses various topics, including: unification methodologies in software reliability assessment; application of neural networks to software reliability assessment; software reliability growth modeling using stochastic differential equations; software release time and resource allocation problems; and optimum component selection and reliability analysis for fault tolerant systems. Software Reliability Assessment with OR Applications is designed to cater to the needs of software engineering practitioners, developers, security or risk managers, and statisticians. It can also be used as a textbook for advanced undergraduate or postgraduate courses in software reliability, industrial engineering, and operations research and management.
Software Reliability Modeling

Author: Shigeru Yamada

Publisher: Springer

ISBN: 4431545646

Category: Mathematics

Page: 90

View: 598

Software reliability is one of the most important characteristics of software product quality. Its measurement and management technologies during the software product life cycle are essential to produce and maintain quality/reliable software systems. Part 1 of this book introduces several aspects of software reliability modeling and its applications. Hazard rate and nonhomogeneous Poisson process (NHPP) models are investigated particularly for quantitative software reliability assessment. Further, imperfect debugging and software availability models are discussed with reference to incorporating practical factors of dynamic software behavior. Three software management problems are presented as application technologies of software reliability models: the optimal software release problem, the statistical testing-progress control, and the optimal testing-effort allocation problem. Part 2 of the book describes several recent developments in software reliability modeling and their applications as quantitative techniques for software quality/reliability measurement and assessment. The discussion includes a quality engineering analysis of human factors affecting software reliability during the design review phase, which is the upper stream of software development, as well as software reliability growth models based on stochastic differential equations and discrete calculus during the testing phase, which is the lower stream. The final part of the book provides an illustration of quality-oriented software management analysis by applying the multivariate analysis method and the existing software reliability growth models to actual process monitoring data.
Principles of Performance and Reliability Modeling and Evaluation

Author: Lance Fiondella

Publisher: Springer

ISBN: 9783319305998

Category: Technology & Engineering

Page: 655

View: 491

This book presents the latest key research into the performance and reliability aspects of dependable fault-tolerant systems and features commentary on the fields studied by Prof. Kishor S. Trivedi during his distinguished career. Analyzing system evaluation as a fundamental tenet in the design of modern systems, this book uses performance and dependability as common measures and covers novel ideas, methods, algorithms, techniques, and tools for the in-depth study of the performance and reliability aspects of dependable fault-tolerant systems. It identifies the current challenges that designers and practitioners must face in order to ensure the reliability, availability, and performance of systems, with special focus on their dynamic behaviors and dependencies, and provides system researchers, performance analysts, and practitioners with the tools to address these challenges in their work. With contributions from Prof. Trivedi's former PhD students and collaborators, many of whom are internationally recognized experts, to honor him on the occasion of his 70th birthday, this book serves as a valuable resource for all engineering disciplines, including electrical, computer, civil, mechanical, and industrial engineering as well as production and manufacturing.
Reliability Modeling With Computer And Maintenance Applications

Author: Nakamura Syouji

Publisher: #N/A

ISBN: 9789813224513

Category: Technology & Engineering

Page: 396

View: 555

The development of Reliability and Maintenance theory and applications has become major concerns of engineers and managers engaged in order to design and product systems that are highly reliable. This book aims to cover the ongoing research topics in computer system, reliability analysis, reliability applications and maintenance policies, so as to provide awareness for those who engage systems design, being students, technicians, or research engineers, as a reference guidebook.
System Reliability Management

Author: Adarsh Anand

Publisher: CRC Press

ISBN: 9781351117647

Category: Computers

Page: 260

View: 540

This book provides the latest research advances in the field of system reliability assurance and engineering. It contains reference material for applications of reliability in system engineering, offering a theoretical sound background with adequate numerical illustrations. Included are concepts pertaining to reliability analysis, assurance techniques and methodologies, tools, and practical applications of system reliability modeling and allocation. The collection discusses various soft computing techniques like artificial intelligence and particle swarm optimization approach for reliability assessment. Importance of differentiating between the optimal release time and testing stop time of the software has been explicitly discussed and presented in the book. Features: Creates understanding of the costs associated with complex systems Covers reliability measurement of engineering systems Incorporates an efficient effort-based expenditure policy incorporating cost and reliability criteria Provides information for optimal testing stop and release time of software system Presents software performance and security layout Addresses reliability prediction and its maintenance through advanced analytics techniques Overall, System Reliability Management: Solutions and Techniques is a collaborative and interdisciplinary approach for better communication of problems and solutions to increase the performance of the system for better utilization and resource management.
OSS Reliability Measurement and Assessment

Author: Shigeru Yamada

Publisher: Springer

ISBN: 9783319318189

Category: Technology & Engineering

Page: 185

View: 902

This book analyses quantitative open source software (OSS) reliability assessment and its applications, focusing on three major topic areas: the Fundamentals of OSS Quality/Reliability Measurement and Assessment; the Practical Applications of OSS Reliability Modelling; and Recent Developments in OSS Reliability Modelling. Offering an ideal reference guide for graduate students and researchers in reliability for open source software (OSS) and modelling, the book introduces several methods of reliability assessment for OSS including component-oriented reliability analysis based on analytic hierarchy process (AHP), analytic network process (ANP), and non-homogeneous Poisson process (NHPP) models, the stochastic differential equation models and hazard rate models. These measurement and management technologies are essential to producing and maintaining quality/reliable systems using OSS.
Software Reliability Modeling

Author: Shigeru Yamada

Publisher: Springer Science & Business Media

ISBN: 9784431545651

Category: Mathematics

Page: 90

View: 800

Software reliability is one of the most important characteristics of software product quality. Its measurement and management technologies during the software product life cycle are essential to produce and maintain quality/reliable software systems. Part 1 of this book introduces several aspects of software reliability modeling and its applications. Hazard rate and nonhomogeneous Poisson process (NHPP) models are investigated particularly for quantitative software reliability assessment. Further, imperfect debugging and software availability models are discussed with reference to incorporating practical factors of dynamic software behavior. Three software management problems are presented as application technologies of software reliability models: the optimal software release problem, the statistical testing-progress control, and the optimal testing-effort allocation problem. Part 2 of the book describes several recent developments in software reliability modeling and their applications as quantitative techniques for software quality/reliability measurement and assessment. The discussion includes a quality engineering analysis of human factors affecting software reliability during the design review phase, which is the upper stream of software development, as well as software reliability growth models based on stochastic differential equations and discrete calculus during the testing phase, which is the lower stream. The final part of the book provides an illustration of quality-oriented software management analysis by applying the multivariate analysis method and the existing software reliability growth models to actual process monitoring data.
Optimization Models in Software Reliability

Author: Anu G. Aggarwal

Publisher: Springer Nature

ISBN: 9783030789190

Category: Technology & Engineering

Page: 373

View: 295

The book begins with an introduction to software reliability, models and techniques. The book is an informative book covering the strategies needed to assess software failure behaviour and its quality, as well as the application of optimization tools for major managerial decisions related to the software development process. It features a broad range of topics including software reliability assessment and apportionment, optimal allocation and selection decisions and upgradations problems. It moves through a variety of problems related to the evolving field of optimization of software reliability engineering, including software release time, resource allocating, budget planning and warranty models, which are each explored in depth in dedicated chapters. This book provides a comprehensive insight into present-day practices in software reliability engineering, making it relevant to students, researchers, academics and practising consultants and engineers.
Recent Advancements in Software Reliability Assurance

Author: Adarsh Anand

Publisher: CRC Press

ISBN: 9780429776564

Category: Mathematics

Page: 142

View: 706

The aim of this book is to provide a platform to academicians, practitioners, and researchers to understand current and future trends in software reliability growth modeling. Emphasis will be on qualitative work relevant to the theme with particular importance given to mathematical modeling for software reliability and various methods and applications of multi attributed decision making in governing the software performance. Presents software quality and security models Offers reliability analysis, assurance techniques for software systems Covers methodologies, tools, and practical applications of software reliability modeling and testing resources Includes robust reliability design techniques, diagnostic, and decision support Discusses stochastic modelling for software systems
Safety and Risk Modeling and Its Applications

Author: Hoang Pham

Publisher: Springer Science & Business Media

ISBN: 0857294709

Category: Technology & Engineering

Page: 430

View: 630

Safety and Risk Modeling presents the latest theories and methods of safety and risk with an emphasis on safety and risk in modeling. It covers applications in several areas including transportations and security risk assessments, as well as applications related to current topics in safety and risk. Safety and Risk Modeling is a valuable resource for understanding the latest developments in both qualitative and quantitative methods of safety and risk analysis and their applications in operating environments. Each chapter has been written by active researchers or experienced practitioners to bridge the gap between theory and practice and to trigger new research challenges in safety and risk. Topics include: safety engineering, system maintenance, safety in design, failure analysis, and risk concept and modelling. Postgraduate students, researchers, and practitioners in many fields of engineering, operations research, management, and statistics will find Safety and Risk Modeling a state-of-the-art survey of reliability and quality in design and practice.
Current Trends in Reliability, Availability, Maintainability and Safety

Author: Uday Kumar

Publisher: Springer

ISBN: 9783319235974

Category: Technology & Engineering

Page: 738

View: 737

Containing selected papers from the ICRESH-ARMS 2015 conference in Lulea, Sweden, collected by editors with years of experiences in Reliability and maintenance modeling, risk assessment, and asset management, this work maximizes reader insights into the current trends in Reliability, Availability, Maintainability and Safety (RAMS) and Risk Management. Featuring a comprehensive analysis of the significance of the role of RAMS and Risk Management in the decision making process during the various phases of design, operation, maintenance, asset management and productivity in Industrial domains, these proceedings discuss key issues and challenges in the operation, maintenance and risk management of complex engineering systems and will serve as a valuable resource for those in the field.
Multi-State System Reliability

Author: Anatoly Lisnianski

Publisher: World Scientific Publishing Company

ISBN: 9789813106147

Category: Mathematics

Page: 376

View: 757

Most books on reliability theory are devoted to traditional binary reliability models allowing for only two possible states for a system and its components: perfect functionality and complete failure. However, many real-world systems are composed of multi-state components, which have different performance levels and several failure modes with various effects on the entire system performance (degradation). Such systems are called Multi-State Systems (MSS). The examples of MSS are power systems where the component performance is characterized by the generating capacity, computer systems where the component performance is characterized by the data processing speed, communication systems, etc. This book is the first to be devoted to Multi-State System (MSS) reliability analysis and optimization. It provides a historical overview of the field, presents basic concepts of MSS, defines MSS reliability measures, and systematically describes the tools for MSS reliability assessment and optimization. Basic methods for MSS reliability assessment, such as a Boolean methods extension, basic random process methods (both Markov and semi-Markov) and universal generating function models, are systematically studied. A universal genetic algorithm optimization technique and all details of its application are described. All the methods are illustrated by numerical examples. The book also contains many examples of application of reliability assessment and optimization methods to real engineering problems. The aim of this book is to give a comprehensive, up-to-date presentation of MSS reliability theory based on modern advances in this field and provide a theoretical summary and examples of engineering applications to a variety of technical problems. From this point of view the book bridges the gap between theoretical advances and practical reliability engineering.